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On the one-point Friedrichs model 

G Duerinckx 
Faculte des Sciences, Campus Plaine, Universite Libre de Bruxelles, CP 231, Boulevard 
du Triomphe, B-1050 Bruxelles, Belgium 

Received 20 July 1983 

Abstract. We investigate both analytically and numerically the one-point Friedrichs model 
characterised by a AV interaction with a non-square integrable coupling function u ( w )  = 1. 
If the continuous spectrum of the Hamiltonian is bounded from below, a form factor is 
needed to avoid some infinities and the solution of the spontaneous emission problem then 
depends on an unphysical cut-off parameter a. This solution is denoted by p ( r ;  a) and its 
a-dependence may be removed by taking the appropriate limit. Indeed, we find that: 
Lim,,, p ( f ;  a) = 1. If, on the contrary, the continuous spectrum is assumed to be infinite, 
then no form factor is needed and p(t)=exp(-2nh2r). 

1. Introduction 

The finiteness of Weisskopf-Wigner (ww) type theories describing the interaction of 
an ‘m-level’ atom ( m  < +a) with a bounded number of photons, has been rigorously 
demonstrated under some weak conditions (essentially that the kernels of some integral 
operators have to be square integrable) by Grimm and Ernst (1974). These conditions 
are fulfilled when the atom is either the Dirac (Grimm and Ernst 1974) or the 
non-relativistic (Moses 1973, Davidovich and Nussenzveig 1980) hydrogen atom. 
Unfortunately, once the well known dipole approximation is used, some kernels are 
no longer square integrable and some infinities appear (Grimm and Ernst 1974,1975). 
Within the lowest order ww theory (a two-level atom in interaction with one photon 
only), Grimm and Ernst (1975) showed in particular why a combination of the dipole 
approximation with a ‘physical’ cut-off at distances of the order of the inverse Bohr 
radius leads to realistic results on the line shifts, etc. Similar conclusions were reached 
by Davidovich and Nussenzveig (1980). However, from the ‘mathematical’ point of 
view one may combine the dipole approximation with any form factor which eliminates 
these infinities. An extensive (numerical) study of the influence of form factors on 
the dynamics (of spontaneous emission) has been done by Yang et a1 (1974). These 
authors considered a two-level atom in interaction with a one-dimensional radiation 
field. 

In this paper we consider the lowest order ww theory (Grimm and Ernst 1975). 
It coincides (Grecos 1978) with the one-point Friedrichs (1948) model. We assume 
the radiation field to be one dimensional. The Hamiltonian is represented by a ‘matrix’, 
one of its ‘elements’ is an integral operator with the coupling function u ( o )  as kernel. 
If U(&) is not square integrable, a form factor is (in general) needed to avoid some 
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infinities. The solution to the spontaneous emission problem then depends on an 
unphysical cut-off parameter a. Once this solution (denoted hereafter by p (  t ;  a)) has 
been computed, one may remove its a-dependence by taking the appropriate limit 
a + +CO. We shall show that, for the case of a constant coupling function u ( w )  = 1, 
no form factor is needed if the continuous part of the spectrum of the Hamiltonian is 
infinite: w E (-CO; +CO). The solution of the spontaneous emission problem then decays 
exponentially: p ( t )  = exp(-2.rrA2t). If, on the contrary, the continuous spectrum is 
bounded from below, a form factor is needed and Lim,,, p ( t ;  a)  = 1. 

This paper is divided as follows. In § 2, we recall briefly the one-point Friedrichs 
model and the solution of the initial value problem. In § 3, we consider an interaction 
with u ( w )  = 1. Two cases are considered: the continuous spectrum of the Hamiltonian 
is (a) infinite, (b) semi-infinite. A numerical investigation of the solution of the 
spontaneous emission problem (in particular its a-dependence) is presented in 0 4. 
We also analyse its dependence on the lower end-point of the continuous spectrum 
and on the coupling parameter. Conclusions and some comment for an interaction 
with v ( w )  = wl’* for large values of w are given in 9 5. 

2. The one-point Friedrichs model 

The one-point Friedrichs model consists of an unperturbed Hamiltonian, Ho, with an 
absolutely continuous spectrum extending over some interval 4 of the real axis and 
a point eigenvalue wo, embedded in it. A AV interaction ( A  being a real coupling 
parameter) couples the point eigenvalue to the continuum. 

In the spectral representation of Ho, the total Hamiltonian, H = Ho + AV, is given 
by the ‘matrix’ 

and an element If) of the Hilbert space X on which H acts is represented by a column 
vector 

I f W { f o ;  f ( w ) ) .  (2.2) 

Here fo is a complex number, f ( w )  is a square integrable function, and S ( w  - 0’) is 
the usual Dirac functional. The Hilbert space X is equipped with the scalar product 

(2.3) 

The element Hl f )  is represented by 

Once an initial condition If( t = 0)) = lg) is given, the time evolution of the state If( t ) )  
is completely determined by the Schrodinger equation 
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The probability for the initial state lg) to survive is ( t  3 0) 

P ( t )  = I(glf(t))12 = lkl e-iHrg)12 

where 

for example, Marchand 1968, Grecos 1978). We have ( zBspH)  

1 

is a straight line parallel to the real axis, from above. 
For models of the Friedrichs type, it is easy to compute the resolvant of H (see 

(2.7) I -AB(w’)  
w ’ - 2  1 

- A u ( w )  ~ ( z ) S ( w - w ’ )  AZv(w) t7 (w’ )  
W - Z  w - Z  ( w - Z ) ( ~ ’ - z )  

+ 
with 

The function ’(2) is analytic in the complex plane except for a cut 9 along the real 
axis. Its possible zero(s) are real, simple, isolated and lie outside the cut if u ( w )  # 0 
for all w E 9 (Friedrichs 1948, Marchand 1968, Grecos 1978). A zero of ‘(2) is a 
pole of the resolvant of H and thus an eigenvalue of H. 

For the systems of physical interest, the continuous spectrum of H is bounded from 
below. The dipole approximation leads to an interaction with v ( w ) = o ~ ~ / ~  for large 
values of w (Grimm and Ernst 1975). Sometimes one assumes an interaction with 
u ( w )  = w:” (Davidson and Kozak 1970). In both cases the kernel v ( w )  is not square 
integrable, equation (2.9) diverges (in general) and a form factor is needed. 

We therefore introduce a form factor ~ ( w ;  a )  and we require x ( w ;  a )  to be such 
that 

(a) x ( w ;  a)>O for all W E  9, except at the (lower) end-point of 9 where ~ ( w ;  a )  
may vanish. 

(b) Lim,,, x ( w  ; a )  = 1 for all w E 9, probably except at the (lower) end-point 
of 9. 

(c) dwx(w; a ) l v ( ~ ) l ~ / w  < +a3 (U* ’ 0) .  

Here a represents an unphysical cut-off parameter. Then we replace the ‘old’ complex 
function ’(2) (see (2.8)) by the ‘new’ one 

‘ ( 2 ;  ~ ) = w ~ - z - A ’ u ( z ;  0) (2.10) 

with 

(2.11) 

For the spontaneous emission problem, the initial condition is I g ) e { l ;  0 )  and the 
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survival probability becomes ( t  L 0) 

(2.12) 

3. An interaction with u ( w )  = 1 

We consider the case of a constant coupling function u ( w )  = 1. As mentioned before, 
the continuous spectrum of H, for the systems of physical interest, is bounded from 
below. Nevertheless, it will be instructive to consider first the case of an unbounded 
continuous spectrum. 

3.1. A n  infinite continuous spectrum 

Suppose that the continuous spectrum of H is infinite, 9 = (-00; +CO). The survival 
probability then may be computed exactly without even introducing any form factor. 
Indeed, although v ( w )  = 1 is not square integrable, one may interpret the integral in 
the RHS of (2.9) as 

1 
u ( z ) =  Lim dw-=*iv 

p++m J-r w - - z  (3.1) 

where the + ( - ) sign holds for Im( z )  > 0 (Im( z )  < 0) and so 

q( z)  = q*( z )  = wo- z T ivA (3.2) 

with the same convention for the + or - signs as before. Recalling that the contour 
in (2.6) lies above the real axis for t 2 0, the survival probability (for the spontaneous 

emission problem) decays exponentially ( t  L 0) 

= lexp[-i( wo - ivh  ' ) t ]I2 = exp(-2vA2t). 

Consider now the Schrodinger equation (2.5). It takes the form 
+m 

idrfo(t)=wofo(t)+A dwf(w; t )  J-, 

(3.3) 

(3.4) 

iarf(w; t ) = A f o ( t ) + w f ( w ;  t ) .  (3.5) 

As {fo(t =O); f ( w ;  t =0)}={1; 0) for the spontaneous emission problem, the solution 
of (3.5) is 

f ( w ;  t )  = -iA e-'"' Jo' d7 eiwTf0(7), 

Replacing this expression for f ( w ;  t )  in (3.4), yields 

ia,fo( t )  = wofo( r)  - i A 2  j-r dw e-'"' {: d7 eiwT fo( T) 

(3.6) 

(3.7) 



On the one-point Friedrichs model 389 

and the solution of (3.7), such that f o ( t  = 0) = 1, is: 

exp [-i(wo-i?rA2)t] ( t 2 0 )  
exp [-i( wo + i d  *)t] ( ? S O ) ’  

(3.8) 

We now introduce a form factor, and we show that the a-dependent survival probability 
p ( t ;  a) tends to the correct result (3.3), by taking the limit a + +CO. 

Therefore, consider a Lorentzian form factor centred on w = wo 

x ( w ;  a) = a2/[(w - way+ a23. (3.9) 
Our model then coincides with the one considered by Pietenpol (1967). A straightfor- 
ward calculation yields 

1 a 2  +W 

= (T*(z; a )  (3.10) 

with 

(T,( z ; a) = - ?ra/ ( z  - wo i a  ) (3.11) 

where the + ( - )  sign holds for Im(z) > 0 (Im(z) < 0), and 

~ ( z ;  a )  = q , ( z ;  a) = wo- z + ?rA2a/(z - wo*ia)  (3.12) 

with the same convention for the + or - signs as already stated. For any value of 
A ( t f O ) ,  the function ~ + ( z ;  a) has two complex zeros in the lower half complex plane 

z o ( h ;  a)=wo- ia /2+i(a /2) (1-4?rh2/a)”* 

z l (A;  a )  = w o - i a / 2 - i ( a / 2 ) ( 1 - 4 ? r A 2 / a ) ” 2 .  

(3.13) 

(3.14) 

Hence the survival probability for the spontaneous emission problem is given by 
p ( t ;  a)=l fo ( t ;  a)I2 with (see (2.12)), ( ta0 )  

(3.15) fo( t ;  a )  = [( 1 + y )  e-”of - (1 - y )  e-irif]/2y 

where 

y = (1 - 4 ~ h ~ / ( ~ ) ~ ’ ~ .  (3.16) 
From (3.15), it is easily seen that P ( t = O ;  a )  = O  (here P ( t ;  a )  =dp(t; a) /dt) .  It is 
possible to remove the a-dependence by taking the limit a + +CO: (see also Middleton 
and Schieve 1973) 

L i m p ( t ;  a-, a )  =Lim a-m I f o ( ? ;  a)12=exp(-2?rh2t). (3.17) 

So for an infinite spectrum, the removal of the unphysical parameter a leads to the 
correct result (compare (3.17) and (3.3)). 

3.2. A semi-infinite continuous spectrum 

We now assume the continuous spectrum of H to be semi-infinite, S; = [ - p ;  +CO). 

Here p is some finite, non-negative real number. 
As the complex function (~(2) is now ill-defined 

( p  <+a), (3.18) 
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a form factor is needed. We introduce as before the Lorentzian form factor defined 
in (3.9). We have 

-a2  
( 2  - W ” ) 2 +  a2  

[ln(-p - z )  - In[(p + w0)’ + - - 

+ [ ( z  - W O ) /  aI{.rr/2 + tan-’[(CL + %)/ .I>] (3.19) 

where the branches of the In and of the tan-’ functions are such that In(-p - z )  = 0 
for z = - p  - 1 and (tan-’(x)/ s +.rr/2. 

From ,y(-p; a )  f 0 it follows that ( ~ ( - p ;  a )  =+CO and that the function ~ ( z ;  a )  
(see (2.8) together with (3.19)) admits one real zero, vL, for any value of A (  it 0). Let 
us isolate the contribution arising from the eigenvalue vL in the solution p ( t ;  a )  = 
/ f o ( t ;  a)12. We have, using Cauchy’s residue theorem 

(3.20) 

The contour is depicted in figure 1 and ~ ‘ ( v ;  a )  = d ~ ( v ;  a) /dv.  If the energy 
expectation value for the initial state 11; 0 )  is finite, then p ( t  = O ;  a )  = 0 (see Chiu et 
a1 1977 and references quoted there). It is also interesting to isolate the exponentially 
decaying contributions to the survival probability. As we know, these contributions 
may be obtained by the standard methods of analytic continuation (see for example 
Marchand 1968, Grecos 1978 and references therein). It is sufficient for our purpose 
to notice that the cut of ~ ( z ;  a )  comes from the term In(-p-z) in (3.19). The 
analytic continuation of ~ ( z ;  a )  below the cut [ - p ;  +CO) may therefore be obtained 
by changing the branch of the In function in such a way that ln(-p - z )  = ln(p + 2) -i.rr 
with ln(p + z )  = 0 for z = - p  + 1. This corresponds to a rotation of the cut [ - p ;  +CO) 

by an angle 0 = -T (see figure 2). The analytic continuation of ~ ( z ;  a )  below the cut 
[ - p ;  +CO) is thus 

- a 2  
( z - w o ) 2 + a  

a + ( z ;  a )  = ,[In( p + 2) - h[(p + w J 2 +  ( ~ ’ 1 ~ ’ ~  

(3.21) 

(3.22) 

Imlz  I * 
--Re(zi 7 R e l z  1 

Figure 1. The contour r. 

rc 
I 

~ 

Figure 2. Rotation of the cut by an angle 0 = Bo. 
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We note here that the results for an infinite spectrum (see (3.12)) are recovered by 
takirlg the limit p + +CO in the expressions above. 

For any A (ZO)  the analytic continuation q+( z ;  a) has at least two complex zeros 
in the lower half complex plane. As before, we denote by zo(A; a) and by zl(A; a) 
the zeros which tend to wo and to wo-ia when A + +0, respectively. The solution 
f o ( t ;  a) (see (3.20)) may be expressed as 

The contour r+ encloses only the rotated cut (see figure 2). Here we have assumed 
implicitly that T+( z ;  a) has only two complex zeros ( zo and zl) in the lower half plane. 
Comparison with (3.15) shows also that the first term (the contribution arising from 
vL) and the last (the integral) one vanish at the limit p + +CO. 

Some analytical results concerning the removal of the unphysical parameter a may 
be obtained if one notices that, for large values of it, the complex function m ( z ;  a) 
given by (3.19) behaves like -In[(-p-z)/a] near the lower end-point z = - p  of 4;. 
As we expect that the main contribution to the integral in the RHS of equation (3.20) 
comes from those points z which lie not too far from the lower end-point - p  of 9, 
we approximate m ( z ;  a) by G ( z ;  a), such that 

G ( z ;  a) =-In[(-p-z)/a].  (3.24) 

At the end of this section, we shall give some other examples of form factors which 
lead to the same approximation. G ( z ;  a) is thus independent of the precise choice of 
the form factor if x ( w  = - p ;  a) ZO. The only reason why we introduce such an 
approximation is that it permits us, as we shall see below, to derive some simple 
analytical results. In the next section we shall see, by numerical means, that the 
discrepancies between the exact and approximate results (respectively computed by 
using the exact U (  z ;  a) and the approximate 6( z ;  a) function) disappear for sufficiently 
large values of a. 

So the approximate survival probability for the spontaneous emission problem is 
given by ( t  0) 

(3.25) 

where is a straight line parallel to the real axis from above, and 

< ( z ;  a ) = w g - ~ - A ’ & ( ~ ;  a). (3.26) 

As &(z  = - p ;  a) = +CO, the function < ( z ;  a) has one real zero, CL, for any finite value 
of A ( Z 0 ) .  One may isolate again the contribution arising from CL. We have 

(3.27) 

the contour r being drawn in figure 1. 

same way as that of ~ ( z ;  a). We have (compare also with (3.21) and (3.22)) 
The analytic continuation of < ( . t ;  a) below the cut [ - p ;  +CO) is performed in the 

<+(z; a ) = w [ 1 - z - A 2 G + ( ~ ;  a) (3.28) 
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with 

&+(z;  a) =-{ ln [ (p++) / a ] - i~}  (3.29) 

where ln(p + z )  = O  for z = - p  + 1. The complex function $ + ( z ;  a) has at least one 
complex zero, i o ( A ;  a), in the lower half complex plane, and f o ( h ;  a ) + + w o  when 
A +D +O. Therefore we have (compare with (3.23)) 

where the contour r+ encloses only the rotated cut (see figure 2). We assume here 
that $ + ( z ;  a) has only one complex zero (io) in the lower half plane. 

In order to remove the cut-off parameter a, we proceed in two stages. First, we 
show that the amplitude of probability [-<'( CL; a)]-' tends, at the limit a + +CO, to 
unity. Second, we show that the integral on the RHS of (3.27) vanishes when a + +CO. 

We prove our first statement as follows. Let the cut-off parameter be given by ( A  # 0) 

a = a( n )  = nh2 exp[(wo+ p + n h 2 ) / A 2 ]  + +CO when n + +CO. (3.31) 

Here n represents some real positive number. Using the equation <( CL; a ( n ) )  = 0, 
we get 

(3.32) v', = v( n )  = -p  - nh + -a when n + +CO. 

Hence it follows that 

[ - < ' ( v ( n ) ;  a ( n ) ) ] - ' = ( l + l / n ) - * +  1 when n++m (3.33) 

which is the announced result. We have mentioned as well (below (3.23)) that the 
contribution arising from the eigenvalue vanishes at the limit p + +CO (and for a < +CO). 

From geometrical considerations (see figure 3), we get 

- p >  CL> CM=-p-a  exp[(-wo-p)/h2], (3.34) 

I " ' "  '\" ' I '  I ~ " ' - 

Figure 3. Geometrical determination of the para- 
meter &. 

Figure 4. Geometrical determination of the para- 
meter uzX.  
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thus 
0 s [-<’( i,; a)]-’ < { 1 + ( A  ’/ a) expC( wo + + ) / A  ’I}-’ (3.35) 

and our assertion follows trivially. 

ln(p + x)  + i r  for every x E [ - p ;  +CO), we rewrite it in the form 
Consider now the integral in the RHS of (3.27). Using the relation In(-p - x * io) = 

(3.36) 

with 

h( X; a )  = A ’ / [ { w 0  - x + A In[( p + x)/ a]}’ + ( T A  ’)’I]. (3.37) 

The function h(x; a )  vanishes for x = - p  and x = +CO. Its extrema are the solutions of 

(3.38) 

(3.39) 

0 = -1 + A’ / (p  + X )  

or of 

0 = wo-  x + A’ ln[(p + x) /a ] .  

The last equation admits no solutions if wo < ugR e a > a C R ,  where 

wgR = - p  + A’- A’ ln(A2/a) (3.40) 

and 

aCR = A’ exp[(p + wo - A2) /A2] .  (3.41) 

The parameter cogR is fixed by noticing that 1 / A 2  is the slope of l n [ (p+x) / a ]  for 
x=-p+A2.  A glance at figure 4 clearly shows that (3.39) admits no solutions if 
wo < w:R or equivalently if a > aCR; aCR is fixed by the relation wo = woCR ( a = a C R ) ,  

that is by (3.41). 
For a > aCR, and for any finite value of A ( # O ) ,  the function h(x; a) has a single 

maximum at x = - p + A 2  (see (3.38)). Then we have O s h ( x ;  a ) S h ( - p + A ’ ;  a )  
for every x E [ - p ;  +CO). Hence it follows that 

(3.42) 

Finally as wgR + +CO for a + +CO, we get (0 # A’ < +CO; p < +CO) 

Lim ( I ( t ;  a)I = 0. (3.43) 
o++m 

Since (by assumption) < + ( z ;  a )  has only one complex zero & ( A ;  a )  in the lower half 
plane, this result means in particular that the contribution arising from the rotated cut 
(see (3.30)) compensates exactly (at the limit a ++CO) for the one arising from the 
complex zero Zo(A; a). 

We finally obtain, using (3.33) and (3.43) (0 # A‘ < +CO; p <+CO) 

Lim $( t ;  a) = Lim (exp(-iGLt)l2 = I. 
a + + m  o++m 

(3.44) 

Thus, if the continuous spectrum is bounded from below, the approximate survival 
probability (for the spontaneous emission problem) does not undergo any decay at 
the limit a ++CO. This rather surprising result contrasts with the case of an infinite 
continuous spectrum (recall (3.3) or (3.17)) and it shows that the two limits p + +CO 
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and a + +a may not be permuted. We note that the case of a 'constant' form factor 

for w E [ -p ;  -p  +a] 
for w ~ [ - p ;  - p  + a ]  x(w; a )  = (3.45) 

can be treated along similar lines, except that no approximation is even necessary. 
Although the Hamiltonian has then two eigenvalues ( vL and vR) for any finite value 
of A ( # O ) ,  we obtain similar analytical results: at the limit a ++CO, [ - T ' (  vL; a)]- '  
tends to 1, and the contributions arising from vR and from the cut [ - p ;  -p  + a ]  vanish. 
We then get the exact result (0 # A'  < +a; p < +CO) 

Lim p ( t ;  a )  = Lim lexp(-iuLt)12 = 1. (3.46) 
a++p: a++m 

We have omitted these latter calculations here because of their likeness to the previous 
ones. However, note that the same kind of arguments as those used to derive (3.35) 
may be used to prove that the contribution arising from uR vanishes at the limit a + +CO. 

We now illustrate, by means of some new examples, the fact that the approximate 
complex function G ( z ;  a ) ,  given by (3.24), is independent of the precise choice of the 
form factor x ( w ;  a ) ,  if x(o = - p ;  a)#O. For the constant form factor above,, a 
straightforward calculation yields 

r -p+a  1 

a( z ; a )  = d o  = In[ 1 - a / ( p  + z ) ]  
U - 2  - p  (3.47) 

where the second term on the RHS is negligible for small values of ( p  + z ) / a .  For an 
exponential form factor, x ( w ;  a )  =exp[-(w+p)/a],  we get 

U - 2  

= exp[ - (2 + C L ) /  aIJ51C( - CL - z ) / a I  (3.48) 

where E,(,?) is the exponential integral (Abramowitz and Stegun 1964). Using the 
expansion for small z 

(3.49) 

where y is Euler's constant, it is readily seen that 6 ( z ;  a )  is again the leading term 
of an expansion of a ( z ;  a )  around z = -p, and for large values of a. Note that for 
the (three) form factors under consideration here, x ( - p ;  a )  # 0 and a(-p;  a )  =+a = 
G ( - p ;  a). If we consider a form factor such that x ( - p ;  a )  =0,  then a( -p ;  a )  <+CO 

and G ( z ;  a )  is no longer a 'good' approximation, and for sufficiently small values of 
A, H has no eigenvalues. Nevertheless, it might be seen analytically and/or numerically 
that (3.46) still remains true. 

We end this section with the following remark. One of the central quantities which 
comes into play in non-equilibrium statistical mechanics is the collision operator 
$( z + +io) (see for example Prigogine and Grecos 1979). For the one-point Friedrichs 
model, $ ( z )  is simply a function and is given, up to second order in A ,  by (Grecos and 
Prigogine 1972) 

(3.50) $ ( z )  = -A2[a(w" + Z )  -a( wg - z)]. 
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We omitted here the dependence on a. If the complex function a ( z )  is given by its 
approximate form, (3.24), with p = 0, we get 

$ ( z )  = - A *  In[(wo- z)/(w,+ z ) ]  (3.51) 

which is precisely the expression derived by Davidson and Kozak (1970) (up to an 
inessential factor wo in front of the RHS of (3.51)). 

4. Numerical results 

This section is devoted to a detailed numerical investigation of the survival probability 
for the spontaneous emission problem. We are mainly interested in its dependence 
on: (a) the cut-off parameter a; (b) the lower end-point -p  of the continuous spectrum; 
and (c) the coupling parameter A. 

We observed in the previous section that, for the case of a constant coupling 
function v ( w )  = 1, it was interesting to introduce a Lorentzian form factor, centred on 
w = wo, to remove some infinity (recall (3.18)), the reason is that the survival probability 
may be computed exactly if the continuous spectrum is infinite (see (3.15)). So our 
numerical results for a semi-infinite continuous spectrum may be compared with the 
exact analytical results for the infinite spectrum. In this way, we shall analyse in great 
detail the influence of the lower end-point of the continuous spectrum. We note that 
the case of a Lorentzian form factor was not considered by Yang et a1 (1974). 

-2 -1 0 1 2 -2 -1 0 1 2 
' ' 11 I 

I 

Figure 5. Zeros' trajectories of ~ + ( z ,  a )  for the 
values a = 2 ,  w o =  1 and for: ( a )  I.( = O ;  ( b )  p = 10 
and ( c )  p =to. The numbers beside the open circles 

-2 -1 0 1 2 give the corresponding value for A*.  
i," 
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Analytical results concerning the removal of the unphysical parameter a have also 
been obtained in the previous section. As the explicit expression for a ( z ;  a), the form 
factor being that Lorentzian centred on w = wo, is too complicated, an approximation, 
G( t ;  a ) ,  has been introduced. We mentioned, however, that the discrepancies between 
the exact and approximate results disappear for sufficiently large values of a. This 
will be illustrated numerically in this section. 

We mentioned (below (3.23)) that the contributions to the survival probability, 
arising from the eigenvalue vL and from the rotated cut (the remainder integral on 
the RHS of (3.23)), vanish at the limit p + +CO. So, for sufficiently large values of p, 
the main contribution to the survival probability comes from zo and zl. For p = +CO, 

these complex zeros are given by (3.13) and (3.14). Our first series of numerical 
results illustrates how the zeros’ trajectories of ~ + ( z ;  a) (given by (3.21) with (3.22)) 
depend on the lower end-point -p  of the continuous spectrum 9. For a given value 
of a and for p = +CO, to and tl move along a straight line parallel to the imaginary 
axis for A 2  < a/47r, and parallel to the real axis for A * >  a/47r; they coalesce at the 
point z = wo-iaj2 for A 2  = a/47r. Once p is finite, they do not coalesce for any value 
of A (see figure 5 ) .  If however p is sufficiently large, they come close to the point 
z=wo- ia /2  and still move along a straight line parallel to the imaginary axis for 
small values of A ( A 2 <  a/47r) and parallel to the real axis for large values of A 
( A 2 >  a/47r). A glance at figure 5 shows also that it is the trajectory of zo(A; a )  (recall 
that zo(A; a )  is the complex zero which tends to wo when A + +0) which undergoes 
the main deformation. If now A is kept fixed and a varies, then, for p =+CO, zo and 
z1 move along a circle until they coalesce at the point z =wo-ia/2 for a =47rA2. 
Once a > 47rA2, they move along a straight line parallel to the imaginary axis and, at 
the limit a + +CO, zo(A ; a )  and zl(A; a )  tend to wo-i7rA2 and to wo-ioo, respectively. 
For p < +a, it is again the trajectory of zo( A ; a )  which undergoes the main deformation 
(see figure 6): the most striking feature is that zo(A; a )  tends to -co-2i7rA2 at the 
limit a + +W. For p = 0, this is clearly shown in figure 6. For p = 10, a = lo* is not 
yet sufficiently large to see that Lim,,, Im( zo) = -27rA’. Indeed for large values of 
a, we have zo= 2, and io is the complex zero of i j&; a ) .  Solving i j + ( z ;  a )  = 0 
iteratively yields 

WO 
;LO) = 

5;” = wo + A 2  h[(p + wo) /  a ]  - i r A 2  

?i2) = wo + A In[( p + ,?bl))/ a ]  - i7rA ’. 

If p +Re( 5;)) < 0, this is if a > GCR = ( p  + wo)  exp[(p + w o ) / A 2 ] ,  then 26” + 

-CO - 2i7rA when a + +W. On the other hand if a < GCR then 5h2) + +CO - in-A when 
a + +O. For the values wo = 1 and 7rh2 = 1 used in figure 6, we have GCR = exp( 7 r )  = 23 
if p = 0, and CU‘,, = 11 exp( 1 1  n-) = 10l6 if p = 10. So for p = 10, we have to consider 
values of a larger than 10l6 to see that Lim,,, Im(z,) = -27rA’. 

One of the main analytical results we obtained in the previous section is illustrated 
in figure 7: Lim,,, [-7’(vL; a)]-’= 1, independent of A(Z0). In figure 8, we have 
plotted the time dependence of the exact and the approximate survival probabilities, 
for the spontaneous emission problem. The numerical computation of the exact solution 
p ( t ;  a) is based upon (3.20) with (2.10) and (3.19); for the approximate solution 
b( l ;  a ) ,  we used (3.27). Our numerical results clearly show that, for A # 0, deviations 
between p ( t ;  a) and $ ( t ;  a )  become negligible once a is large enough. Of course this 
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Figure 7. The exact amplitude coefficient (-t)'( U,; a))-' is plotted against A* and for the 
values wo = 1, = 0 and for five values of a (1,10, lo2, lo4 and lo2'). 

is due to the fact that both p ( t ;  a) and @ ( f ;  a) tend to unity (independent of t and A )  
as a + +CO. This latter result is illustrated, for p ( t ;  a) only, in figure 9. We note here 
that the relation a = a ( n ) ,  given by (3.31),  is very useful for our numerical computations 
because it tells us how large a must be in order to get (numerically) p (  f ;  a )  = 1 .  It is 
indeed well known that the integral in the RHS of (3.20) vanishes as t + +CO at least 
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Figure 9. The survival probability p(r; a) for the spontaneous emission problem is plotted 
against time t and for the values wo = 1, h 2  = 0.2, f i  = 0 and for five values of a given by 
(3.31) with n =0.26, 2, 5, 20 and 200. 

1.0) 

0.5; 

Figure 8. The exact (full curve) and the approximate 
(dashed curve) survival probabilities for the spon- 
taneous emission problem are  plotted against time 
I, and for the values wo = 1, h 2  = 0 2 ,  ~r. = 0 and for 

0 

as fast as f- ' :  this estimate may be obtained integrating by parts. So, as ? +  fa, we 
have p ( t ;  a )  = ( - T ' (  v,; a))-*.  On the other hand, the exact and approximate solutions 
are nearly equal for large values of a, and ( - - i j ' (CL;  a ) )  = 1 + l / n  if a is given by 
(3.31). Notice that a ( n )  increases exponentially with p. 

The dependence of the exact solution p ( t ;  a) on the coupling parameter A is 
depicted in figure 10. For wo= 1, a = 10 and p =0 ,  typical values for the coupling 
parameter are (see figure 7): h 2 = 0 . 1 ,  0.2 and 1. For A2=0.1, one observes (figure 10) 
that p ( t ;  a) + +O as t + +a; the contribution arising from vL does not yet influence 
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Figure 10. The survival probability p ( t ;  a) for the spontaneous emission problem is plotted 
against time t and for the values wo = 1, a = 10, p = 0 and for three typical values of the 
coupling parameter: A2=0.1, 0.2 and 1.0. 

appreciably the asymptotic behaviour of the solution. Recall that vL exists for any 
value of A(Z0). For these values of the parameters, one may characterise weak 
coupling by values of A such that A 2  s 0.1. For an infinite continuous spectrum, weak 
coupling may be characterised by values for A such that 47rA2/a s 1. The solution 
p ( t ;  a) = I f o ( ? ;  a)I2 then decreases monotonically to zero (see (3.15)). On the contrary, 
for strong coupling (47rA2/a > l ) ,  the solution exhibits a damped oscillatory decay. 
For typical weak and strong coupling, we finally illustrate, in figure 11, the dependence 
of the solution p ( t ;  a) on the lower end-point -I.L of the continuous spectrum 4. It 
is clear from figure 11 that, in the 'weak coupling regime', the solution for a semi-infinite 
spectrum and the one for an infinite spectrum are nearly equal; the 'background' term 
is then very small, i.e. the contributions arising from the eigenvalue vL and from the 
rotated cut T+ (see (3.23)). 

r -  I 

, . , . , . .  , ,  . , , ,  , . . I  , . ,  

o I 2 3 I s 6 7 a 9 IO 
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Figure 11. The survival probability p ( t ;  a) for the spontaneous emission problem is plotted 
against time I and for the values wo= 1, a = 2, p = 0 (full curve) or p =+a (broken curve) 
and for: (a )A2=0 .1 ;  (b)A2=1.2.  
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5. Conclusion 

In this paper, we investigated the one-point Friedrichs model (the unperturbed eigen- 
value wo of Ho being embedded into the continuous part of the spectrum) characterised 
by a A V interaction with a non-square integrable coupling function U(@) = 1. 

If the continuous spectrum of H is infinite, an appropriate interpretation of some 
integral (see (3.1)) leads to  (some) finite results; no form factor is needed (to solve 
the Schrodinger equation), and the survival probability (for the spontaneous emission 
problem) decays exponentially: p ( t )  = exp(-2?rA2t). If a Lorentzian form factor 
centred on w = wo is now introduced, the removal of the unphysical cut-off parameter 
a, in the now a-dependent solution p (  t ;  a), leads to the correct result p (  t )  given before. 

For the systems of physical interest, the continuous spectrum of H is bounded from 
below, 9 = [ - p ;  +CO). A form factor is then needed to avoid some infinity (see (3.18)). 
For that Lorentzian form factor centred on w = wo, our previous results are recovered 
by taking the limit p + +CO. To obtain some simple analytical results about the removal 
of the cut-off parameter a, the exact complex function a ( z ;  a) (which is needed to 
compute p ( t ;  a)) is approximated by 6 ( z ;  a) = -In[(-p - z ) / a ] .  By means of some 
examples, we showed that this approximation is independent of the precise choice of 
the form factor x ( w ;  a), if x ( w  = - p ;  a) # 0. Due to the existence of an eigenvalue 
vL of H (for any A # 0, and for p <+CO), the limit a + +CO of the solution for the 
spontaneous emission problem remains equal to its initial value p (  t = 0; a) = 1. 

One of the central quantities in non equilibrium mechanics is the collision operator 
+(z++iO). For the model under consideration, + ( z )  reduces to a simple function. 
To second order in the coupling parameter A, the mentioned approximation leads to 
the same function $ ( z )  as the one derived by Davidson and Kozak (1970). 

We presented also an extensive numerical analysis of the solution of the spontaneous 
emission problem. Its dependence on the parameters of the problem (i.e. a, p and 
A )  has been studied in great detail. The most striking feature is that the complex zero 
zo ( + W O  when A + +0) of ~ + ( z ;  a) (see (3.21) and (3.22)) tends, at the limit a + +CO, 

to -m-2i?rA if p < m, and to wo - i d  * if p = CO. By computing numerically the exact 
solution for very large values of a, we illustrated our main result Lim,,,, p (  t ;  a) = 1. 
In the ‘weak coupling regime’, the solution for a semi-infinite spectrum is nearly equal 
to the one for an infinite spectrum. In both cases ( p  < +CO and p = +CO) and for any 
A, @( t = 0; a) = 0. However, for p = +CO, no form factor is needed and then p (  t = 0,) = 
*2?rA2. 

Finally, we note that for an interaction with the kernel ~ ( w )  = 01’2, the above 
approximation leads to the well known problem of ghost states. This will be discussed 
elsewhere. 
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